
Dynamic Vehicle Behavior Modeling

Let’s take a deep dive into dynamic vehicle systems
modeling with a step-by-step example – modeling and
simulating a series hybrid vehicle in Dymola.

A series hybrid has an internal combustion engine that
is only used to generate electricity. This means there
is no direct connection from the engine to the wheels –
instead electric motors are used to provide torque to the
wheels.

This example not only demonstrates how components
from different domains, like internal combustion
engines and electric motors, can be combined to build
a complete model of your vehicle, it also demonstrates
how to model the control systems.

To watch a prerecorded video of this scenario please
Click here!

Deep Dive into Dynamic Vehicle Systems Modeling

1
Model the engine

2
Model the

transmission
3

Model the vehicle

4
Simulate

the model
5

Decompose as
subsystems

6
Create

interfaces7
Create architecture

8
Implement

a variant
9

Closed-loop
transmission

controller

10
Engine

controller with
state machine

11
Simulate

vehicle model

Dymola is a registered trademark of Dassault Systèmes AB.

https://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/Videos/Webinar3/Building-models-in-Dymola-HD.mp4

We'll start by modeling the internal combustion engine model. Models are typically created by dragging and dropping component models into
a schematic diagram. Notice that the engine model has two inputs. The first input is used to specify the normalized throttle position for the
engine and the other, a Boolean signal, used to specify whether fuel should be injected or not. We'll revisit the topic of how to control this
engine later. For now, we'll send constant signals into the engine as a starting point and switch to a closed-loop control strategy later. To finish
building the engine portion of our model, let's add a rotational inertia of 0.15 kg m2 to represent the crankshaft.

Note that the block diagrams used to model control
functions are seamlessly combined with the
mechanical components. More importantly, notice the
difference in the connectors. The block diagram
components have arrows on them, indicating
information flows through the system. The
mechanical connections on the other hand are
directionless, acausal connectors. Acausal connectors
allow us to build models that are flexible. In this case,
we've connected the crankshaft to the engine model
but we have the freedom to connect it to any other
rotational component. We don't need to worry about
whether that component will be a spring, an engine,
or a clutch; whatever is needed, we just instantiate it
from the library and connect it up.

Step 1: Modeling the Engine and Crankshaft

Internal
combustion

engine

Boolean signal used
to specify whether fuel

should be injected or not

Throttle position
of engine

Crankshaft with a
rotational inertia

of 0.15 kg m2

Information flow

Acausal connector

BaseEngine is instantiated from the DLR Powertrain library. All other components are from the Modelica® standard library.

With the engine out of the way, let's start looking at the transmission. Let’s model a simple transmission with a pair of motors from the
standard library. One motor is connected to the engine, acting as the generator and the other is connected to the wheels, driving the vehicle. To
control the motor, let's insert a current control block. This component is essentially an actuator, controlled from outside the transmission. The
input to this component is the requested motor current. The actual value for the requested current will have to be calculated based on the
torque required by the vehicle. For now, let's simply add a constant input with an initial value zero (motor is not running).

Next, we connect the generator and the motor, and
add a ground to the circuit. Our model is still missing
one important thing: batteries to store energy. There
are many ways to model batteries. Just to keep
things simple, let's use a large capacitor as the
battery and add it in parallel with the motor. This
means that electricity generated by the generator can
flow either into the battery or into the motor. The
motor current actuator determines how much flows
one way and how much flows the other. To start the
battery out charged, let’s specify the initial voltage of
the capacitor as 300V.

Motor acting
as a generator

Input to actuator approximated with a
constant, with an initial value of zero

Battery modeled as a
capacitor with capacitance of

10F and an initial voltage of 300V

Actuator: Current
control block

Motor to drive
the vehicle

Step 2: Modeling the Transmission

We'll start with a simple model for the vehicle. The main effects we need to capture are how torque is translated into a force on the vehicle, the
drag force present on the vehicle and the overall vehicle inertia. For this model, we are only interested in longitudinal dynamics, that is, we are
only interested in modeling the vehicle moving in a straight line. The first step in modeling the vehicle is to add wheels that transform the
torque generated from the transmission into forces that move the vehicle forward in a straight line. Note how the wheel model has a rotational
connector on one end indicated by a gray circle and a translational connector indicated by green square on the other. Let’s also add the overall
vehicle mass and a damper to represent losses that scale up with speed. In reality, aerodynamic drag scales differently, this is just an
approximation. So far everything looks good!

CHECKPOINT!
We started by adding the engine model and transmission
models. The engine control has two inputs. One determines
whether fuel is being injected and the other specifies the
throttle position. Our transmission control model has one
input which allows us to control how much current is input to
the motor. The transmission contains a battery which allows
us to store up electrical energy for use later. This is typically
done to allow the engine to operate at its most efficient
operating point. When large torque demand comes from the
driver, the torque is delivered by draining the battery rather
than forcing the engine to operate at an inefficient point. The
battery is also important because it provides a place to store
energy recovered from regenerative braking. Finally, we have
added the wheels and attached the overall vehicle mass.

Step 3: Modeling the Vehicle

Wheels with rotational
connector on one end

and translational
connector on the other

Aerodynamic drag

Let’s increase the value of the commanded current and rerun the simulation,
making the vehicle accelerate.

We can now simulate this model and study the behavior of the vehicle. Let’s
start by observing the vehicle velocity, we see that the vehicle isn't moving.
This is expected since the transmission controller is requesting zero motor
current.

The generator is producing electricity and since current is not requested by the
motor, it charges the battery instead, from its initial voltage of 300v.

Step 4: Simulating the Behavior of the Vehicle

Vehicle velocity stays at zero,
because requested current is zero.

Battery is charging as the generator
is producing electricity.

Once commanding current is
increased, vehicle is in motion.

Compared to the previous scenario,
battery is now charging
at a lower rate.

Let's compare the battery voltage trajectory against the previous simulation. Sure
enough, we see that the battery is now charging more slowly because power that
was previously going into the battery is now powering the motor.

Step 5: Decomposing into Subsystems

To get closer to real-world conditions, we need to refactor this model and improve the control systems. We could start by changing and
reconnecting components, but there are a couple things to watch out for. First, when reconnecting things, you run the risk of introducing
errors. Second, we may want the original open-loop control version for testing. To address these concerns, we should follow standard
configuration management guidelines.

Our first step is to organize the components by subsystems. To do this, we select the components that are part of the same subsystem and
create a new subsystem model. Let's create a new subsystem called EngineController out of the engine control components – the throttle
indicator and fuel flag, while preserving the original components as a new model called OpenLoopController. We perform the same actions for
the engine, transmission, transmission-control and vehicle models. The system is now composed of subsystems. The next step is to
standardize the interfaces for each subsystem.

New subsystem EngineController contains
both throttle position and fuel flag signals

Components organized by subsystems

Step 6: Creating Interfaces

Let's define a standardized interface for the
engine-controller. In our model, the engine control
decides what the throttle position should be and
whether to fuel the engine. Our current engine
control model reflects this by including two output
signals. One is a Boolean signal for the fueling
command and the other is a continuous signal
indicating normalized throttle position. The current
engine control model defines both the interface,
the above two signals that it needs to work with,
as well as the implementation, that it uses open-
loop commands. We will separate this model into
an implementation and an interface.

We'll also add one additional input signal to the
new interface to supply the engine controller with
information about the state of the battery voltage.

We now have an interface which defines what is
common across all potential engine control models
and a specific implementation that just uses open
loop commands.

Let’s follow the same procedure for the engine subsystem, splitting it into an
interface and a specific implementation. This interface includes inputs from the engine
controller and an output shaft for connection to the transmission. The
implementation includes the internal combustion engine and the crankshaft. We will
follow this procedure for the transmission, the transmission-controller and the
vehicle model, adding additional sensors along the way.

true

In
te

rf
ac

e
Im

pl
em

en
ta

ti
on

throttle

fuelFlowOn
flange_b

y1

y

u

u

y

flange1
i

y

flange flangeR

y

FuelFlag

Throttle

k=0.2

y1

y

u

u
const

k=1

y

Step 7: Creating Vehicle Architecture with Interfaces

To create the vehicle architecture, let's build a new version of our system model, but this time, using only the interfaces that we have
developed. After connecting the interfaces together, we end up with a model that looks very similar to what we had before, except this time
we haven't included any implementation details.

This architecture contains only the interfaces and no implementation has been specified. It captures the structure of our system, regardless of
the specific implementations we choose to use. Once the architecture has been created we don't need to connect subsystem models anymore,
all the interfaces have been connected to work across any implementation. Next step is to create a variant of the vehicle and decide which
implementations of each subsystem will be included in the variant.

CHECKPOINT!
After simulating the initial vehicle, we created
subsystems by aggregating multiple components
with related functions. The interfaces for each sub-
system was extracted, separating them from specific
implementations. The vehicle architecture now
captures the structure of the system, regardless of
the specific implementation for each subsystem.

The vehicle architecture now captures the structure of the system,
regardless of the specific implementation for each subsystem.

Vehicle Architecture

Step 8: Extending the Vehicle Architecture to Implement a Variant

For the base variant, let's recreate our original model with open-loop control. To do this we need to specify the implementations for each
subsystem. At the moment, we only have one implementation for each subsystem. We could directly specify our implementation choices in
the architecture model, but a better approach is to leave the architecture model as it is and create a variant from our architecture that captures
our specific implementation choices. For this, we simply create a new model that extends from the architecture. When we extend, the new
model starts from the old model. From there, we can make further changes, like specifying the implementation details for the different
subsystems. This allows us to easily create many different variants of the same fundamental architecture. All these models can exist at the
same time instead of constantly switching back and forth between different configurations. It is worth pointing out that there is no limit to
how many times we can extend from a model. For example, we might extend from our architecture to create a baseline configuration of our
vehicle where all the implementations are filled in. From there, the engine designers might extend from the baseline model but insert a more
detailed engine model while keeping the transmission and vehicle subsystem models the same. Similarly, the transmission designers might do
the same with the transmission while leaving the engine and the vehicle as is. These best practices for configuration management organize the
models and support collaborative workflows.

Vehicle Architecture Vehicle variant
implementing open
loop controls

Step 9: Implementing a Closed-loop Transmission Controller

Once we've gone through and specified all of our initial implementations,
we can again simulate the model. Of course, we'd still have the same
uninteresting response because of the open loop elements, but now, we're
in a position to quickly do something about that. For example, let's create a
transmission controller that directs our vehicle to follow a specified speed
profile. To do this, we'll create a new transmission controller
implementation by extending from the interface. When we extend, we are
not copying the contents of the interface into our implementation. This is
important because copying and pasting creates redundancy. By extending,
we avoid copying and pasting, making maintaining the models easier.

Once we create our new transmission controller model by extending from
the appropriate interface, we just need to fill in the implementation details.
Let’s instantiate a PID controller for speed control with a trapezoidal wave
pattern for the drive cycle.

To incorporate the new controller, instead of creating a whole new vehicle
model, we can extend from the original open loop vehicle model and simply
change our selection of the transmission controller. Again, we select the
subsystem we are interested in, the transmission controller in this case, and
we select from a collection of existing controllers. The relationship between
different variants of our model is concisely captured. In this case, our
current vehicle model, extends from the open-loop vehicle model, but
replaces the transmission controller with a different transmission controller.

PID

PID

Ti=0.1 s

-

feedback

trapezoid

period=3 s

y

u

Speed Trace Transmission Control with a PID controller
and a trapezoidal wave pattern for the drive cycle.

Speed sensor
input from

Vehicle

Vehicle variant
implementing
Speed Trace
Transmission Control

Step 10: Implementing a State Machine for the Engine Controller

Let's repeat the procedure for the engine controller, extending from the interface to create a new model and implement a state machine to
turn the engine on and off. Taking in the battery voltage as input, the state machine turns on the engine to charge the battery when the
voltage is too low, and turns off the engine to save fuel, when the battery voltage is too high. To select this variant of the engine controller, we
select the engine controller subsystem and switch to this implementation. The variant choices in the architecture for each subsystem is
automatically determined based on the interfaces they implement.

true

FuelControl stateGraphRoot

root

Charging Discharging

y

u

active

HighVoltage LowVoltage

150

>=
50

<=

B
R

Throttle y1

State machine with 2
states: Charging and

Discharging

Battery voltage sensor
input from Transmission

Starts charging
when voltage
below 50VTurns engine off

when voltage above
150V

Vehicle variant implementing
Speed Trace Transmission and
On Off Engine Control

Step 11: Simulating Vehicle with the New Controllers

With these two new controller implementations, let's take the vehicle out for a spin.
After we simulate the model, we plot the vehicle speed and compare it to the desired
drive cycle profile. Here we see the transmission controller is doing a good job of
following the drive cycle speed trace. Now let's look at what is going on with the
engine and the battery. Notice how the engine comes on when the battery voltage
gets too low and turns off when the battery voltage gets too high. Another important
thing to know about the battery is that it is charging and discharging, even when the
engine is off. The discharging comes when the vehicle accelerates because the motor
takes energy from the batteries to increase the vehicle speed. But how is the battery
recharging when the engine is off? The answer is regenerative braking. When did we
implement regenerative braking? We did it in the transmission control. The PID
controller in the transmission controller requests positive torque from the motor
when the vehicle needs to accelerate, and requests negative torque when the vehicle
needs to decelerate. Because we are using acausal models, all of our components
include balance equations, for things like mass, momentum, charge and so on. In
order for these balance equations to work out, the kinetic energy in the vehicle has to
go somewhere. The motor turns it back into electricity when negative torque is
requested and the resulting current flows into the battery, charging the battery in the
process.

The important point here is that we don't need to implement regenerative braking.
We implement a mathematical model of each component and then impose
conservation equations across all the connections. As a result, we are always assured
of accurate accounting. This is important because if model developers had to
implement all the consequences of the different modes for each component it would
be very easy to overlook something. With acausal modeling, all of this is taken care of.

CHECKPOINT!
Using this series hybrid example, we've shown how to build a
complete multi-domain system model from scratch. We also
organized the model into subsystems following configuration
management best practices. We implemented some additional
controllers to demonstrate typical capabilities seen in a series
hybrid. Finally we simulated the vehicle with the new
controllers and verified the controller behavior.

State machine turns
Engine on and off

Vo
lt

ag
e

[V
]

Sp
ee

d
[m

/s
]

Next Step: Leverage the Vehicle Library to Model Your Vehicle

While it's good to know that all of this is possible with Dymola, it is also important to realize that you don't need to start from scratch. This
architecture based approach is very common and many of the specialized libraries that come with Dymola include not only high quality
component and subsystem models but also the interfaces and architectures that give you a head start in building models of your system. You
can also import your legacy models into Dymola, either using direct interfaces, or by adopting the standard FMI interface.

Vehicle Systems Modeling and Analysis (VeSyMA) is a complete set of libraries for vehicle modeling and simulation. It includes engine,
powertrain and suspensions libraries that work in conjunction with the Modelica Standard Library. In addition, battery with electrified
and hybrid powertrain libraries are available as well. Please watch the other videos in this series for more information on Dymola.

CONCLUSION
The need for more intelligent and autonomous capabilities
has resulted in increasing complexity of systems.
Traditionally, building many prototypes and subjecting them
to exhaustive tests was the only way to achieve convergence
of multi-disciplinary designs. This reliance on prototypes
however, has proven to be time consuming and expensive.
Moreover, the sophistication of intelligent systems have
made it more difficult to test all possible scenarios, thereby
limiting what can be achieved with physical prototypes.

Building virtual models is the most effective way to identify
and resolve integration issues upfront, reducing rework and
improving quality.

VeSyMA is registered trademark of Claytex Services Limited | Modelica is a registered trademark of the Modelica Association
FMI is a registered trademark of FMI Standard Org

VeSyMA Vehicle Library

https://www.3ds.com/products-services/catia/products/dymola/
http://www.fmi-standard.org/

Articles in the series:
Model-based Systems Engineering – A Primer

Dynamic Vehicle Behavior Simulation – A Deep Dive
System Architecture with SysML for Control Systems Engineers

	Slide Number 1
	Deep Dive into Dynamic Vehicle Systems Modeling
	Step 1: Modeling the Engine and Crankshaft
	Step 2: Modeling the Transmission
	Step 3: Modeling the Vehicle
	Step 4: Simulating the Behavior of the Vehicle
	Step 5: Decomposing into Subsystems
	Step 6: Creating Interfaces
	Step 7: Creating Vehicle Architecture with Interfaces
	Step 8: Extending the Vehicle Architecture to Implement a Variant
	Step 9: Implementing a Closed-loop Transmission Controller
	Step 10: Implementing a State Machine for the Engine Controller
	Step 11: Simulating Vehicle with the New Controllers
	Next Step: Leverage the Vehicle Library to Model Your Vehicle
	Slide Number 15

