ARCADIA

Define, Analyse, Design \& Validate System, Software, Hardware Architectures

Supporting Efficient Collaboration
in Engineering

Validating/Justifying solution against Operational Need

Easing Impact Analysis

Operational Analysis What the users of the system need to accomplish

Functional \&
Non Functional Need What the system has to accomplish for the users

Logical Architecture How the system will work to fulfill expectations

Physical Architecture How the system will be developed and built

Compatible with most processes

top-down bottom-up, iterative, legacy-based, mixed ...

Customer Operational Need Analysis
What the users of the system need to accomplish
\checkmark Define operational capabilities
\checkmark Perform an operational need analysis

System/ SW/HW Need Analysis

What the system has to accomplish for the Users
\checkmark Perform a capability trade-off analysis
\checkmark Perform a functional and non-functional analysis
\checkmark Formalise and consolidate requirements

\checkmark Define architectural

Physical Architecture Design

How the system will be developed \& built
patterns
\checkmark Consider reuse of existing assets design a physical
\checkmark Design a physical reference architecture
\checkmark Validate and check it

Logical Architecture Design

How the system will work so as to fulfil expectations
\checkmark Define architecture drivers and viewpoints
\checkmark Build candidate architectural breakdowns in components
\checkmark Select best compromise architecture

- Operational capabilities
- Actors, operational entities
- Actor activities
- Interactions between activities \& actors
- Information used in activities \& interactions
- Operational processes chaining activities
- Scenarios for dynamic behaviour
- Actors and system, capabilities
- Functions of system \& actors
- Dataflow exchanges between functions
- Functional chains traversing dataflow
- Information used in functions \& exchanges, data model
- Scenarios for dynamic behaviour
- Modes \& states

SAME CONCEPTS, PLUS:

- Components
- Component ports and interfaces
- Exchanges between components
- Function allocation to components
- Component interface justification by functional exchanges allocation

SAME CONCEPTS, PLUS:

- Behavioural components refining logical ones, and implementing functional behaviour
- Implementation components supplying resources for behavioural components
- Physical links between implementation components
- Configuration items tree
- Parts numbers, quantities
- Development contract (expected behaviour, interfaces, scenarios, resource consumption, non-functional properties...)

Dataflow: functions, op. activities interactions \& exchanges

Functional chains, operational processes through functions \& op. activities

Modes \& states of actors, system, components
Breakdown of functions
\& components

Data model: dataflow \& scenario contents, definition \& justification of interfaces

Component wiring: all kinds of components

Allocation
of op.activities to actors, of functions to components, of behav.components to impl.components, of dataflows to interfaces, of
 elements to configuration items

Verifying \＆checking solution against Non－functional \＆Industrial Stakes

Method layers	Performance specific data sample	Safety specific data sample
OPERATIONAL NEED ANALYSIS	Max reaction time to threat	Feared events
FUNCTIONAL／NONFUNCTIONALNEED ANALYSIS	Functional chain（FC）to react to threat． Maximum allowed latency on FC	Critical functional chains associated to events
LOGICAL ARCHITECTURE DESIGN	Processing \＆exchanges complexity Functional chains allocation	Redundancy paths securing functional chains
PHYSICAL ARCHITECTURE DESIGN	Resource consumption on FC Resulting computing latency	Common failure modes Fault propagation on FC
CONTRACTS FOR DEVELOPMENT \＆IVVQ	Allocated resources to satisfy latency	Needed reliability level

\checkmark Cost \＆Schedule
\checkmark Interfaces
\checkmark Performance
\checkmark Maintainability $\quad \checkmark$ IVVQ
\checkmark Safety／security \checkmark Product Policy

